Ultrahigh Error Threshold for Surface Codes with Biased Noise

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Threshold Error Rates for the Toric and Surface Codes

The surface code scheme for quantum computation features a 2d array of nearestneighbor coupled qubits yet claims a threshold error rate approaching 1% [1]. This result was obtained for the toric code, from which the surface code is derived, and surpasses all other known codes restricted to 2d nearest-neighbor architectures by several orders of magnitude. We describe in detail an error correctio...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Finite length LT codes over Fq for unequal error protection with biased sampling of input nodes

Finite length LT codes over higher order Galois fields Fq for unequal error protection (UEP) are analysed under maximum likelihood (ML) decoding. We consider a biased sampling method to create the LT code graph. In contrast to a previous approach by Rahnavard et al., where a predetermined number of edges is created per importance class given a check node of degree d, our procedure allows to pre...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

High threshold error correction for the surface code.

An algorithm is presented for error correction in the surface code quantum memory. This is shown to correct depolarizing noise up to a threshold error rate of 18.5%, exceeding previous results and coming close to the upper bound of 18.9%. The time complexity of the algorithm is found to be polynomial with error suppression, allowing efficient error correction for codes of realistic sizes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2018

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.120.050505